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ABSTRACT
Whereas current chemical risk assessment (RA) schemes within the European Union (EU) focus mainly on toxicity and

bioaccumulation of chemicals in individual organisms, most protection goals aim at preserving populations of nontarget

organisms rather than individuals. Ecological models are tools rarely recommended in official technical documents on RA of

chemicals, but are widely used by researchers to assess risks to populations, communities and ecosystems. Their great

advantage is the relatively straightforward integration of the sensitivity of species to chemicals, the mode of action and fate in

the environment of toxicants, life-history traits of the species of concern, and landscape features. To promote the usage of

ecological models in regulatory risk assessment, this study tries to establish whether existing, published ecological modeling

studies have addressed or have the potential to address the protection aims and requirements of the chemical directives of the

EU. We reviewed 148 publications, and evaluated and analyzed them in a database according to defined criteria. Published

models were also classified in terms of 5 areas where their application would be most useful for chemical RA. All potential

application areas are well represented in the published literature. Most models were developed to estimate population-level

responses on the basis of individual effects, followed by recovery process assessment, both in individuals and at the level of

metapopulations. We provide case studies for each of the proposed areas of ecological model application. The lack of

clarity about protection goals in legislative documents made it impossible to establish a direct link between modeling

studies and protection goals. Because most of the models reviewed here were not developed for regulatory risk

assessment, there is great potential and a variety of ecological models in the published literature. Integr Environ Assess

Manag 2010;6:338–360. � 2010 SETAC
Keywords: Ecological models Extrapolation recovery Indirect effects Bioaccumulation
INTRODUCTION
The current field of ecological risk assessment (ERA) of

chemicals is characterized by a limited amount of integrated
ecological theory. Lower tiers of ERA are based on the results of
standard tests which assess the toxicological effects on
individual organisms, while effects on higher organizational
levels are not routinely taken into account. The protection aims
of the various ERA schemes, however, are rarely directed
toward individuals, and are more commonly assumed to focus
on populations, communities or entire ecosystems (EC 2002;
Hommen et al. this issue). Therefore, during previous years, the
international field of ERA recognized the need for more
population-level oriented approaches (Barnthouse et al.
2007). A full understanding of the impacts of pollutants at
higher levels of biological organization requires an under-
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standing of fundamental ecology and the integration of more
ecological data into toxicological studies. Various frameworks
have been proposed to include more ecology in the decision-
making process (Chapman 2002; Brock et al. 2006). Attempts
to combine toxicology and ecology have been more numerous
in recent years, both in experimental and modeling studies (van
den Brink 2008). The development of mesocosm studies
(Campbell et al. 1998; Giddings et al. 2001; van den Brink
et al. 2006) allows the effects of substances (mostly pesticides)
on seminatural communities to be assessed. However, some
important ecological processes, such as dispersal and recoloni-
zation, are not included in these experimental systems, nor are
large species like predators, such as fish, which might play a
central role in the community.

Our understanding of the way populations and systems
function and interact with their environment, as well as the
development of ecological theories, has greatly benefited from
mathematical modeling (Malthus 1798; Lotka 1924; Volterra
1926). In recent decades, models are increasingly used for
management purposes, especially in fisheries and wildlife
management (Starfield 1997). Computational and techno-
logical progress enables researchers to model very different
scales of biological and spatial organization, ranging from very
detailed processes, such as the accumulation of chemicals in
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individuals, to simulating population dynamics on a landscape
scale. In the field of ERA, a major advantage of ecological
models is that they are able to integrate various ecological and
toxicological concepts and processes, allowing extensive
scenario testing without the accompanying high costs of,
e.g., additional experimental setups (Forbes et al. 2008).
Their potential in ERA has been recognized and has resulted
in an ongoing development of various types of models for
assessing risks of chemicals to populations, communities and
ecosystems (Bartell et al. 2003; Pastorok et al. 2003).

The field of pesticide ERA is especially benefiting from
these developments, because assessing and quantifying risks to
nontarget organisms constitute the major part of the pesticide
authorization process. Various stakeholders have acknowl-
edged the added value that ecological models bring to ERA,
resulting in, for instance, the LEMTOX workshop (Forbes
et al. 2009; Thorbek et al. 2010) held in 2007, where
representatives of academia, governmental bodies and indus-
try identified advantages, caveats and ways forward, through a
combination of presentations and discussions. The 2 eLINK
workshops also held in 2007 focused on the problem of
extrapolating effects measured for 1 specific exposure pattern
to the variety of exposure patterns predicted by FOCUS step
3 models (Brock et al. 2010; Hommen et al. 2010a). Both
workshops specifically discussed the role of ecological models
in the ERA of pesticides under the 91/414/EC directive (EC
1991).

With regard to legislation, protecting against adverse
effects of chemicals, the authorization and registration of
chemical substances in the European Union (EU) is governed
by different regulatory frameworks. The directives refer to
the uses of chemicals, e.g., as plant protection products,
biocides, pharmaceuticals or industrial chemicals. In
addition, substances are evaluated in terms of the protection
of environmental compartments. Within the European
Water Framework Directive (EC 2000), for example,
environmental quality standards have been set up for 33
priority substances.

Hommen et al. (this issue) compared different EU
directives referring to the ecological effects of chemicals,
and analyzed their environmental protection goals, data
requirements and risk characterization. They also defined 5
application areas within RA that would benefit particularly
from various models:
1) r
elevance of effects observed on individuals for the
population level,
2) e
xtrapolation of effects of a tested exposure pattern to
other, untested, exposure patterns,
3) e
xtrapolating recovery processes, from individual to
population level recovery, including recolonization,
4) a
nalysis and prediction of possible indirect effects in
communities, and
5) b
ioaccumulation and biomagnification within food chains
or food webs.

The main objective of this study was to search for existing
ecological, mainly population, models that have been or can
be readily used to assess risks of chemicals to nontarget
organisms. The aim was to understand whether they can help
in addressing the protection requirements of relevant EU
directives, and to establish which model types are appropriate
for different application areas.
We do not attempt to present an exhaustive review of all
models, because Bartell et al. (2003) and Pastorok et al.
(2003) have already provided excellent reviews of ecological
models and their potential use in the risk assessment of
chemicals, together with their relative strengths and weak-
nesses. To our knowledge, however, no previous attempts
have been made to assess the role and potential position of
ecological models in regulatory RA, more specifically to
determine whether they can address the requirements of
protection goals in various EU chemical directives. In
addition, our extensive literature search allowed us to obtain
and assess more recent publications than previous studies did.
To illustrate our point and highlight the link with protection
goals for the reader, we provide case studies for each of the
above-mentioned areas of application. Lastly, the database
with all models reviewed, their potential areas of application,
and their description using general and more technical criteria
is made available as additional information with this
publication (Supporting Information S1).

MODEL ASSESSMENT
Ecological models, or model applications, published in

peer-reviewed journals were brought together in a database
by means of a literature search using simple keywords relating
to ecotoxicology and risk assessment (e.g., ecological models,
populations, toxicants, stress, risk), using all major search
engines, such as Web of Science, CAB Abstracts, and Scopus.
The majority of references related to chemical fate or
exposure models, which were excluded from further evalua-
tion. Ecological models that included toxicological effects on
organisms were preferred, but purely ecological models were
also taken into account when they were considered to be
potentially useful and chemical effects could be integrated in
a relatively straightforward manner.

In total, we assessed 148 publications and institutional
reports, grouping publications dealing with the same model or
slightly modified versions of it. This resulted in 90 evaluated
entries in our model database, with additional entries that
were not evaluated but were characterized as having potential
value for users (Supporting Information S1). These were
either models relating to integrated pest management (Liu
et al. 2005; Tang et al. 2005; Holt and Cooper 2006) or
model reviews (Koelmans et al. 2001; Ares 2003; Stark and
Banks 2003). To evaluate the published models, we defined 5
groups of descriptors: model identification, model focus,
model characterization, potential areas of application and
model evaluation.

Model identification lists the name of the publication and/or
model and the main reference. When multiple publications
deal with the same model, the whole list is given in a separate
sheet in the database.

Model focus presents general information on the focal group
of organisms modeled, the habitat type considered and the
level of organization, i.e., whether it is an individual-,
population-, community-, or ecosystem-level model.

Model characterization provides information on the formal-
ism of each model, discriminating between different levels
of spatial and biological organization by using 4 different
model types: scalar or unstructured, matrix, physiologically
structured, and individual-based models. Furthermore, it
notes whether the model includes any type of toxicological
effects, how exposure is considered and which chemical (or
type of chemical) is evaluated. The classification of the
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exposure–effects link is based on eLINK documents (Brock
et al. 2010) and includes direct link models, toxicokinetic–
toxicodynamic models, simple population models, complex
population models, and food-web and/or ecosystem models.
Finally, this category indicates the spatial and temporal scales
used and whether stochastic events are included.

Potential areas of application indicates which areas can be
addressed by the model. These areas are summarized in the
Introduction and will be explained further in the Case Studies
section.

Model evaluation summarizes more technical details of a
model, such as the ease with which parameters can be
estimated, whether and how validation, calibration, uncer-
tainty and sensitivity analyses have been carried out, model
flexibility, and availability of the program or code. Finally, the
type of output is provided, as well as, in the case of a purely
ecological model, its potential for use in the ERA of
chemicals.

MODEL DATABASE ANALYSIS
In total, we evaluated 63 models that included exposure to

and effects of toxicants and can or have been already directly
used in chemical ERA, while 27 models included only
ecological processes. Most (77%) of the 90 models assessed
and described are population-level models, with the excep-
tion of a few individual- and ecosystem-level models. Model
focus ranged from accurate description of specified species’
life cycles to general representations of various systems.
Consequently, some models were developed to describe
specific habitats and species, while others could be applied
to a range of habitats and species. The majority of the models
describe aquatic, mostly freshwater, habitats, while some
models relate to the marine environment (Chen and Liao
2004; Raimondo and McKenney 2006). Around a quarter of
the models describe terrestrial systems (e.g., Sherratt and
Jepson 1993; Kjaer et al. 1998; Wennergren and Stark 2000).

We primarily grouped models according to their biological
level of organization, i.e., individual, population, metapopu-
lation, and community and/or ecosystem models (Tables 1–
4). In the following sections, we present some examples for
each biological level. Additionally, we discuss a subset of
individual-, population-, and metapopulation-level models
where spatial aspects are explicitly considered; these are also
summarized in Tables 1 to 4.

Individual-level models

Several publications in the database addressed exclusively
individual responses to toxicant exposure (Table 1). Apart from
lethal effects, most of these individual models also address
sublethal effects acting through impaired growth or matura-
tion. A recent example describing the impact of exposure to a
toxicant (Methyl-Hg) on behavior was presented in Murphy
et al. (2008). In their model, a chemically induced decrease in
larval swimming speed resulted in impaired larval growth and
thus increased stage duration, with increased predation risk.
Klanjscek et al. (2007) developed an individual-level model,
based on Dynamic Energy Budgets (Kooijman 2000), assessing
the uptake, elimination and bioaccumulation of PCBs in a
marine mammal, the right whale. Their model also serves as a
potential platform for the assessment of population-level
responses. The work by Ashauer et al. (2007a) focuses on
establishing a mechanistic link between different exposure
regimens of various chemicals and their effects on the survival
of Gammarus pulex. These types of models are referred to as
toxicokinetic-toxicodynamic (TK-TD) models, a class of
models thatmechanistically account for time-varying exposure,
and, consequently, effects of chemicals on individuals (Lee et al.
2002; Lee and Landrum 2006; Ashauer et al. 2006, 2007,
2007a). Ashauer and Brown (2008) provide a review on this
group of models, more specifically on the toxicodynamic part,
linking dynamic exposure and effects, including assumptions,
data requirements, advantages, and constraints of these
approaches. Most TK-TD models account for lethal effects,
but some can model effects of toxicants on various other
endpoints, such as growth or reproduction, i.e., sublethal
effects (Billoir et al. 2007). They are usually implemented on
the level of individuals or groups, according to age, stage, size,
etc. Subsequently, these mechanistic links can be integrated
into population models to assess effects at the population level
(Pery et al. 2004, 2006; Ducrot et al. 2007).

Population-level models

Table 2 provides a list of publications that describe
population models. Within the table we evaluate the
suitability of models to address questions in 1 or more of
the proposed application areas.

Approximately 21% of all evaluated population models
describe unstructured populations, in which all individuals are
identical in terms of their life-history details, and simple
processes like births and deaths determine the dynamics of the
population or group. Even though they are very simple and
include only the most basic processes in a population, they add
more realism to ERA by assessing the effects of pollutants on
cumulative demographic rates and, consequently, on projected
abundance or population growth rate. Some examples in our
database include Adams et al. (2005), in which simple models,
in the form of ordinary differential equations (ODEs), were
fitted to data for population dynamics of aphids in broccoli
fields repeatedly sprayed with pesticides. Ecosystem models
(Traas and Aldenberg 1992; Hanratty and Stay 1994; Naito
et al. 2002) are usually a combination of unstructured models
for each of the functional groups.

More than half (53%) of all population models evaluated
are structured population models. These models tend toward
a higher level of realism, because individuals of 1 species have
different characteristics in different stages of their life cycle.
Furthermore, effects of environmental stressors tend to be
expressed differently in different life stages. Classes or groups
in structured models are based on stage, age, physiological
condition, size, or any other demographically relevant
criterion. Most common are matrix models, with distinct
stage or age classes combined with a discrete time approach.
Matrix models can be used to calculate the population growth
rate, l, for a given set of life cycle data (e.g., age dependent
survival and fecundity). The sensitivity of the growth rate to
changes in the life table data can be evaluated analytically
with a so-called elasticity analysis (for more information on
matrix models, see Caswell 2000). Events and parameters are
usually deterministic, which makes matrix models suitable for
projecting population growth, i.e., assessing abundance or
growth rate in the future based on current values. The
parameters of matrix models and the impact of toxicants on
these parameters are both defined directly from life table
data. Half of the matrix model applications in our database
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incorporated a TK-TD model to describe mechanistically how
effects depend on the body burden changing over time. Often
an energy budget model simulating individual growth and
reproduction, that is, a Dynamic Energy Budget (DEB) model
(Kooijman 2000) is integrated (Lopes et al. 2005; Liao and
Chiang 2006; Ducrot et al. 2007). When combined with a
model for individual growth and reproduction, such matrix
models can easily account for sublethal impacts on repro-
duction and development.

The next class of population models regards individuals as
unique, and these are therefore termed individual-based
population models (IBMs, sometimes also called agent-based
models); they make up 26% of all the population models in our
review. Within IBMs, population properties are a result of
keeping track of individuals’ intraspecific and interspecific
interactions, as well as their interactions with the environment.
Their great advantage is their flexibility, because in principle
each aspect, including complex behavior, can be included into
the model. Furthermore, inclusion of individual variability in
the form of distributions from which parameter values are
derived allows a direct simulation of demographic stochasticity
or probabilistic behavior. One of the disadvantages of such an
approach is that, in most cases, assumptions and data used in
IBMs are both exhaustive and very species-specific, so their
development is very data hungry, requiring a lot of computing
power to keep track of all individuals in a population, and their
analysis can become very complex and cumbersome. This puts
them in the highest levels of realism and makes them suitable
for use in case-specific studies in higher tiers of ERA. Early
examples of IBMs are predominantly fish models, with non-
ERA examples in our database including De Angelis et al.
(1991) andBeard and Essington (2000). Examples of nonspatial
(fish) IBMs used in ecotoxicological studies are Jaworska et al.
(1997) and Madenjian (1993). More recent examples of
nonspatial IBM applications outside the field of ERA aremostly
aquatic. Rinke and Petzoldt (2008) and Vanoverbeke (2008)
focused on Daphnia, while Beaudouin et al. (2008) and the
Piscator model (van Nes et al. 2002) modeled fish. Recent uses
of IBMs in ERA include a Gammarus (Schmidt 2003) and
Daphnia model (Preuss, Hammers-Wirtz, et al. 2009), mostly
to refine higher tiers of the pesticide registration process.
Terrestrial examples are provided in Baveco and deRoos (1996)
and Davidson and Armstrong (2002), who used an IBM to
assess the impact of a brodifacoum, a mouse poison, on an
island population of New Zealand saddlebacks.

Ecosystem models

A small fraction of the evaluated models address the higher
level of biological organization, such as food webs, commun-
ities, and ecosystems (Table 3). Within ERA, they have been
applied mainly to freshwater ecosystems, e.g., SWACOM
(O’Neill et al. 1982), LERAM (Hanratty and Stay 1994),
CATS-4 (Traas et al. 1998), CASM (Naito et al. 2002), C-
COSM (Traas et al. 2004), and AQUATOX (Park et al.
2008). An early version of the CATS model was also applied
to meadow ecosystems (Traas and Aldenberg 1992) and was
chosen as one of the case studies discussed below. CASM is an
expanded version of SWACOM, while LERAM is a version of
CASM adapted to littoral ecosystems. The definition of
aquatic food web components differs slightly between these
models, with phytoplankton, zooplankton, omnivorous and
piscivorous fish, and macroinvertebrates being among the



Table 3. Reviewed community/ecosystem-level ecological models

Potential
application area

# Model name Main reference Model type
Toxicity

included? 1 2 3 4 5
Space

considered?

1 A food web bioaccumulation
model for organic chemicals

in aquatic ecosystems

Arnot & Gobas 2004 Unstructured Y X N

2 Deriving water
quality criteria

De Laender 2007 Unstructured Y X X X N

3 EcoWin Ferreira 1995 IBM N X N

4 LERAM Hanratty &
Stay 1994

Unstructured Y X X X X N

5 CASM Naito et al. 2002 Unstructured Y X X X X N

6 SWACOM O’Neill et al. 1982 Unstructured Y X X N

7 AQUATOX Park et al. 2008 Unstructured Y X X X X N

8 C-COSM Traas et al. 2004 Unstructured Y X X X X N

9 CATS Traas & Aldenberg 1992 Unstructured Y X X X X N

10 Recovery of
macroinvertebrates
following a pulse-
disturbance in river

Watanabe
et al. 2005

Unstructured Y X X X N
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constant factors. Dynamics of various compartments are
usually represented by a set of differential equations,
representing the lack of structure within a compartment,
and application is usually accompanied by a sensitivity or
uncertainty analysis using Monte Carlo simulation. Spatial
heterogeneity, apart from heterogeneity in 1 dimension
(depth of the water layer), is usually not taken into account.

Spatial models

There is a small subset of individual-level models that
include detailed spatial exposure patterns, combining spatial
foraging models with food web or food chain accumulation
models, but without the resulting effects on groups or
Table 4. Reviewed metapopula

# Model name Main reference

1 Carabid metapopulation model Sherratt & Jepson 1993

2 Metapopulation dynamics:
indirect effects and multiple

distinct outcomes

Spromberg et al. 1998

3 ALMaSS (potential) Topping et al. 2003

4 MASTEP (potential) van den Brink et al. 2007

aNote that not all models are metapopulation models in the classical sense, b

perspective.
individual organisms; for example, Schipper et al. (2008)
evaluated the effects of heavy metal exposure on a river
floodplain. For terrestrial vertebrates, exposure is integrated
over individual home ranges, assuming, e.g., random walk
movement and spatial heterogeneity in diet and contaminant
exposure (see also Purucker et al. 2007) (Table 1).

Early analyses of the potential impact of spatial structure
for population-level ERA are presented in the following
papers. Maurer and Holt (1996) analyzed the effect of
chronic pesticide stress on populations, based on simple,
demographically unstructured, spatially implicit metapopu-
lation models. Spromberg et al. (1998) extended the analysis
by including temporal dynamics in exposure in a simple
unstructured population model incorporating diffusion
tion-level ecological modelsa

Potential
application area

Model type
Toxicity

included? 1 2 3 4 5
Space

considered?

Unstructured Y X X X X Y

Unstructured Y X X X Y

IBM N X X X Y

IBM Y X X Y

ut have potential to address population level issues from a metapopulation
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between a limited number (3) of patches. Sherratt and Jepson
(1993) analyzed 2 simulation models, 1 stochastic model with
random walk movement between 16 fields and another
deterministic one including predator and prey dynamics and
simple diffusion-like dispersal. These studies were mostly
theoretical, providing insights and identifying potential
mechanisms like action at a distance. This means that local
population dynamics in unexposed patches are affected
indirectly by stress, through their links (dispersal) with
exposed patches. Table 4 lists reviewed publications where
metapopulations are modeled. Vale and Grant (2002)
provide another example of a simple spatial, stage-structured
model, to assess the impact of insecticides on (hypothetical)
species of dung fauna.

Later studies have attempted to assess the risk posed to
specific organisms in specific areas (spatially explicit ERA). To
this end, structured population model approaches have been
extended to include both a population and a spatial structure.
Chaumot et al. (2002) used a ‘‘multi-region’’ Leslie matrix
approach to model the impact of Cd on trout populations in a
network of waterways. Recent examples show how spatial
IBMs can be used to study population recovery in a spatial
context (see van den Brink et al. 2007, in the Case Studies
section below). TheALMaSS system (Topping et al. 2003) is an
extensive IBM at the landscape level, including landscape
dynamics (management) and multispecies interactions. Top-
ping et al. (2005) and Sibly et al. (2005) compared the results of
this IBM with those obtained using a matrix approach to assess
the risks posed to skylarks by an imaginary insecticide. Other
examples of spatial IBMs in the database, however, do not
include an ecotoxicological component, butwere developed for
pest and wildlife management purposes. For instance, Choi
et al. (2006) modeled slug population dynamics, Van Nes
(2003) modeled submerged aquatic macrophyte population
dynamics, and Van Winkle et al. (1998) modeled trout
population dynamics in streams. These studies serve as
examples of approaches taking into account both biological
and spatial structure, which might be extended to incorporate
toxicant effects.

CASE STUDIES ON POTENTIAL AREAS OF APPLICA-
TION OF ASSESSED MODELS

Models were also assessed for their potential use in the
application areas (Hommen et al. this issue) (Figure 1). Some
Figure 1. Distribution of the reviewed modeling studies across the proposed

application areas.
models were suitable for use in only 1 or 2 of these areas,
others in up to 4. None of the models had the potential to be
used in all 5 application areas, which was to be expected
because the main purpose of the models is to answer
questions that vary greatly between the areas. The following
section elaborates on all of these application areas and
provides examples of modeling approaches to address each
of them. The sections start with a short introduction on the
application area including a brief summary of case studies,
followed by a detailed description of the case studies.

Population-level relevance of individual-level effects

The first application area relates to assessing population-level
responses to individual-level effects, because most directives
aim to protect local populations, rather than individuals (with
the exception of vertebrates). It is clear that species-specific life-
history traits are highly relevant when assessing risks of
chemicals to nontarget species. For example, some chemical
effects are expressed differently in juveniles and adults and to
account for these differences, at least some life history needs to
be included for the population-level risk assessment (Sibly et al.
2005). Our review showed that of the 90 model entries in the
database, 81 (90%) could be used for extrapolating effects from
the individual to the population level (Figure 1). The most
commonly used method to estimate effects of chemicals on
populations and their growth rates uses data on vital rates from
life table response experiments or toxicity tests (Kuhn et al.
2000; Chandler et al. 2004). Vital parameters derived from
stressed individuals as well as from the control group are then
projected using a population model and compared with an
unstressed situation (Klok and de Roos 1996; Salice and Miller
2003). The type of model most commonly used for this form of
extrapolation is that of matrix models. There are also models
that link toxicant effects in a more mechanistic manner (Naito
et al. 2002; van den Brink et al. 2007), andmodels based onDEB
theory (Jager et al. 2004; Billoir et al. 2007; Ducrot et al. 2007).

The following case studies have been chosen to cover the
range of approaches, focal organisms, and output that can be
used for ERA. The first publication, on susceptibility of
biological agents to pesticide stress (Stark et al. 2004), is a
clear and simple example of how integrating basic life-history
traits in a matrix model results in different outcomes for the
species considered. It emphasizes that it is not only the species-
specific susceptibility to toxicants that is important in risk
assessment, but also the ecology of the species itself. In this
sense, it is the exemplar of the integration of ecology into
toxicology and risk assessment. The model clearly shows that
the pest predator, the lady beetle, is more susceptible due to its
higher number of preadult stages, i.e., needs a longer develop-
ment time before reaching a reproductive stage that ensures
population persistence. The second publication, on population-
level effects of individual growth of earthworms in Cu-polluted
soil (Klok and de Roos 1996), was chosen to demonstrate a
somewhat more complex matrix model, one that takes into
account individual processes such as growth and some basic
calculations of energetics, and projects them to population level
responses using a matrix model. Toxicant effects are not
explicitly modeled but are implicit in the datasets from polluted
soils. Rather than explaining the mechanisms, it concentrates
on more specific processes in an organism, considering the
distribution of acquired energy among various individual-level
processes, and the effects of toxicants on this distribution.
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Although the model shows that individual earthworms do grow
even after the concentration of Cu in the soil exceeds the safe
concentrations, one must be careful in accepting it as harmless,
as the trapping of individuals in a subadult stage has obvious
consequences for the total population and even for the food
chain or ecosystem.

Finally, the individual-based model of a largemouth bass
population and the effects of PCBs on young-of-year clearly
demonstrates the amount of data and ecological functions
needed for such a modeling approach (Jaworska et al. 1997).
Constructing an individual-based fish population model
requires many variables to be considered, from life-history
traits and metabolic processes to lethal and sublethal effects
of a specific toxicant. This is often very disadvantageous,
because much of this kind of data is still not available, while
many processes or aspects of species behavior might not be
known either. However, even with the clear difficulties faced
when constructing an IBM, the advantages of investigating
emergent processes and results that reflect natural behavior
may outweigh the problems. The largemouth bass popula-
tion, for instance, shows an increased juvenile mortality by
the presence of PCB. This results in less competition within
the cohort for zooplankton, leading to increased weight and
length of the surviving individuals. Nevertheless, to under-
stand individual-based models and interpret the results
correctly, their processes and assumptions need to be properly
understood, as well as the temporal and spatial scales. This is
also emphasized by the authors themselves.

Susceptibility of biological control agents to pesticides—Stark
et al. (2004) investigated the role that life-history differences
play in population responses to pesticides. It focused on
mortality and reduction of fecundity (as the sublethal effect),
and the influence of population structure on the dynamics of
3 species with different life-history traits: a predatory lady
beetle, Coccinella septempunctata; its prey, the pea aphid,
Acyrthosiphon pisum; and a common aphid parasitoid,
Diaeretiella rapae. This combination of species represents an
important predator-prey complex in biological control.
Entries for the age-structured Leslie projection matrix (Leslie
1945) model are life-history parameters, such as survivorship
in different stages and fecundity of the population.

Although the toxicant used in this study was only hypo-
thetical and its effects were mimicked by decreasing fecundity
and survival, it was shown that differences between species in
even a small number of life-history parameters greatly
impacts the population susceptibility to pesticides. Equal
levels of mortality or reduction of fecundity have different
impacts on different species The predatory lady beetle shows
the greatest response, due to its higher number of life stages,
which suggests a longer development time before reaching
reproductive age, and a lower reproductive output than the
other 2 species modeled.

Toxicological effects of Cu on individual growth and reproduction
in earthworm populations—Klok and de Roos (1996) devel-
oped a model to assess the impact of Cu-polluted soil on
earthworm (Lumbricus rubellus) populations. The model
consists of 2 levels, an individual level describing growth
and fecundity of earthworms, and a stage-structured matrix
model that projects population-level effects of individual
growth and reproductive output in Cu-stressed conditions.
The individual-level model follows the dynamic energy
budgets theory (Kooijman 2000), the central assumption
being that maintenance and growth compete more directly
with each other than with reproduction. Energy requirements
for maintenance always take priority over growth and
reproduction. Food intake is proportional to the surface area,
while growth and maintenance are proportional to the wet
weight (W) of the individual organism. The surface area is
assumed to be proportional to W2/3 and reproduction is
assumed to start after a certain threshold size (adult size) has
been reached. Under constant food conditions, individuals are
assumed to grow according to the von Bertalanffy growth
curve.

The population-level model is a matrix projection model,
based on 4 stages, namely the cocoon, juvenile, subadult, and
adult stages. Entries in the matrix represent the following
transitional probabilities: the probability of remaining in the
same stage, the probability of developing into the next stage
and reproductive output, which is a property only of the adult
stage. Values of all these entries are determined by the model
for individual growth and reproduction.

This study investigated 3 possible toxicity scenarios:
decrease in energy assimilation, increased maintenance costs
for detoxification, and a best-fit scenario (increased main-
tenance costs and extra energy for cocoon production). The
results show that, in all scenarios, individuals get trapped in
the subadult stage and are thus incapable of reproduction.
The authors suggest that data on the duration of juvenile
stages, rather than only on hampered reproduction, might be
a better estimate of toxic effects at a population level.

Individual-based modeling of PCB effects on largemouth bass—
Because individual-based models generally demand a lot of
data and ecological functions, we limit ourselves to describing
only the most relevant processes in the model.

Jaworska et al. (1997) developed an individual-based
model that simulates the daily development, growth, and
survival of largemouth bass, Micropterus salmoides, from the
egg stage, set at 1 April, to the end of their first growing
season, set at 15 October. Nest creation, growth (through
consumption), and egg mortality are temperature-dependent.
The modeled environment represents a strip of shoreline
where bass construct their nests and young-of-the-year
(YOY) life stages are usually found. Reproduction starts with
nest construction by male spawners, whose numbers and
length distribution are specified by the user/modeler. Number
of eggs is a function of male length, because it is assumed that
larger males attract larger females and fecundity depends on
female size. The timing of nest creation and the development
rate from the egg to the swim-up larval stage is temperature
dependent. After hatching, yolk-sac larvae are assumed to
have a constant growth rate until they reach the initiation size
of the swim-up larval stage. Daily consumption depends on
an individual’s random encounters with zooplankton, benthos
and shad prey types, the first 2 of which are represented by
multiple size classes, while shad prey is represented by 18-
week cohorts. Mortality of YOY stages is a combination of
constant rates, size-dependent rate, nest desertion and
starvation. PCB exposure levels are expressed as TCDD
(tetrachlorodibenzo-p-dioxin) concentrations in muscle tis-
sue, ranging from 6 to 20ppm, and no uptake or depuration
of PCBs is simulated. Toxic effects of accumulated PCBs
include increased mortality of post-egg life stages and reduced
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growth of swim-up larvae and juveniles. PCB-induced
mortality of fish decreases with their age. Growth reduction
is a function of toxicant concentration that starts from zero
level at NEC and reaches one at the concentration causing
100% growth inhibition, which is modeled by a hyperbolic
function and arises from the increased metabolic costs due to
processing PCBs and reduced feeding.

The results showed that density-dependent survival was
operating, as density and biomass density leveled off with
increasing spawner density. The mean length visibly
decreased with spawner density due to higher consumption
of zooplankton and shad prey by the bass population. Lower
growth resulted in lower survival as smaller fish experience a
higher mortality rate. PCB effects were apparent but rather
small relative to the natural variation in the model predic-
tions. Density, biomass density, mean condition factor, and
survivorship all decreased, while the mean length increased
slightly with increasing PCB levels. Interestingly, at the lower
spawner densities at the 6 and 10ppm PCB levels, predicted
density and biomass density were higher for the chronically
stressed population. The most important input affecting
densities and survivorship of the bass population was
zooplankton carrying capacity. However, the study did
not include other possible density-dependent mechanisms
that might potentially have a large influence on system
behavior.

Extrapolation of effects across exposure patterns

One of the biggest challenges in pesticide ERA is how to
deal with exposure regimens that vary in time and extrapolate
effects observed after 1 peak exposure in the laboratory to
multiple exposures in the field that occur due to spray drift,
runoff, or drainage. For nonpesticides, e.g., industrial chem-
icals or pharmaceuticals, usually a more constant, chronic
exposure can be assumed. Techniques that can account for
effects of variable temporal exposure include ecological
modeling. Focusing on pesticides, the eLINK workshop
provided some recommendations on this issue (Brock et al.
2010). In our database, 29 (32%) models include the
extrapolation of effects across different exposure patterns.
Due to their straightforward construction, matrix models can
easily incorporate data on vital parameters from different
constant concentrations (Miller and Ankley 2004). However,
they only include dose–response functions relating the
survival of organisms based on external concentrations, which
is a simple form of linking exposure with effects. For a more
mechanistic coupling of exposure and effects using internal
concentrations TK-TD models can be used. Because these
models require extensive laboratory studies for model
parameterization, they are still scarce and focus mostly on
individuals. The following case study demonstrates how TK-
TD models can be linked to population models, and how this
can significantly improve the possibilities to predict popula-
tion level responses at different exposure levels and regimens.

Extrapolating population-level effects of Daphnia magna across
exposure patterns—The individual-based model of D. magna is
described in detail in Preuss, Hammers-Wirtz, et al. (2009)
Each daphnid in the model follows its life-cycle, including
feeding on algae, aging, growing, developing, and—when
maturity is reached—reproducing. The modeled life-cycle is
driven by the amount of ingested algae and the density of the
Daphnia population: at low algal densities, the population
dynamics are mainly driven by food supply, whereas at high
algal densities, the limiting factor is crowding (a density-
dependent mechanism due to chemical substances released by
the animals or physical contact, but independent of food
competition). Thus, the parameters of the model are the
coefficients of different functions describing the life-cycle
traits, while individual age, developmental stage, body length,
feeding rate, and brood size serve as the state variables of the
models. Population dynamics emerge directly from the life
cycle of individual daphnids.

The parameterization of the model was based on several
life-cycle studies with D. magna with different food con-
ditions under flow-through conditions. The model was not
only able to predict the total abundance of the population
over time but also predicted the size structure in good
agreement with observations.

While Preuss, Hammers-Wirtz, et al. (2009) describe the
model without considering the effects of toxicants, the model
has also been applied to a situation with constant exposure to
3,4-dichloroaniline and nonylphenol (Preuss et al. 2008). To
be able to model acute effects of variable toxicant concen-
trations on Daphnia populations, 3 different submodels to
link exposure and effects were tested, namely direct link,
time-weighted averages (TWA), and the damage assessment
model (DAM). A direct link model is a dose–response
mortality curve, in this case after a 48-h exposure. In the
TWA model, effects depend on the time-weighted average of
the external concentration over the individual’s lifespan.
Finally, the DAM model explicitly models toxicokinetics and
toxicodynamics. Uptake and elimination are described by
first-order kinetics (and thus by 2 parameters, the uptake and
elimination rates [kin and kout]) to describe the body burden
(CB), while survival depends on the internal damage, which is
also described by 2 rate constants (the killing rate kk and the
recovery rate kr). Details of the DAM can be found in Lee
et al. (2002) and Ashauer et al. (2006). The model was tested
on the data from 12 population experiments with different
exposure patterns (different numbers of pulses, different
magnitudes of the pulse exposure, and different intervals
between pulses). In most of the cases (9 of 12), it was the
DAM which produced the best fit to the data. In 3 cases, the
simplest model, which assumes a direct link between the
actual concentration in the water and the effect, seemed to be
the best submodel.

Preuss et al. (2008) concluded that the direct link model
can only be used for scenarios with 1 or 2 peaks, while more
complex exposure scenarios require choosing an appropriate
effect model. The TWA approach does not produce better
predictions than the direct link model and is therefore not
suitable for the prediction of population dynamics in complex
exposure scenarios. The DAM, however, predicts the
population dynamics for complex exposure scenarios quite
well. Where it does not, its predictions are protective.

Extrapolation of recovery processes

Population recovery after chemical stress has become
especially interesting for the risk assessment of plant
protection products because Annex VI (the Uniform Princi-
ples (EC 1991; Hommen et al. this issue) offers the option of
effects being acceptable if recovery within a few weeks after
exposure can be demonstrated experimentally or if the



352 Integr Environ Assess Manag 6, 2010—N Galic et al.
likelihood of recovery under field conditions is shown to be
high. In fact, the extrapolation of recovery processes was the
second best represented application area in our database, with
52 model entries (58%). Recovery at the individual level
includes recovery by internal mechanisms (through repair and
elimination processes)(Ashauer et al. 2007; Klanjscek et al.
2007), while the population recovers through reproduction
and/or recolonization of stressed habitats and subsequent
reproduction (Watanabe et al. 2005; van den Brink et al.
2007). Until now, the focus is on the recovery of the
population, so very few models integrate toxicokinetic and/or
toxicodynamic models with population modeling (Chen and
Liao 2004).

The following case study was chosen as an example of a
more complex approach to answering the question whether a
population will recover and when. Barnthouse (2004)
provides examples of simple population models, based on
the logistic growth equation, used for assessing population
recovery. IBMs offer the possibility to include processes
which are of importance for studying population recovery and
that could not be (or could be with more difficulty)
implemented in other modeling approaches, such as dispersal
and both intra- and interspecific interactions. This advantage
also means that the number of processes and parameters
increases greatly, all of which require additional data. Also, a
great deal of computing power is required to simulate all
individuals and keep track of their status. More complex
modeling approaches also require more research time and
resources and are therefore recommended for answering more
specific questions in high tiers of risk assessment. An
additional asset of using IBMs is that of identifying the type
of data that is missing from the parameter set, thus making
future research more focused and using fewer resources.

Predicting spatial population dynamics of aquatic invertebrates
after pesticide contamination using a complex model—Van den
Brink et al. (2007) developed an individual-based model,
whose main purpose was to quantify population effects and
recovery of the water louse, Asellus aquaticus, after pesticide
exposure and especially to examine the relation between
population recovery and the spatial configuration of the
habitat.

The basic modeled unit is a female. The habitat is modeled
using a grid representation of the water bodies in the
landscape. For a fully aquatic species like the water louse,
the water bodies were connected. Processes modeled included
reproduction, mortality, and movement or dispersal. All
processes were stochastic and modeled as events; timing of
these events was drawn from probability distributions. Three
FOCUS (Forum for Co-Ordination of Pesticide Fate Models
and Their Use 2001) scenarios are described in the
publication, namely the ditch, stream, and pond scenario. In
the stream scenario, a movement event was sometimes turned
into a drift event, involving movement to a downstream cell
much further away. Mortality by insecticides was induced at a
rate depending on the exposure concentration, expressed as
predicted environmental concentration (PEC). The model
focused on a single annual cycle of a NW European water
louse, comprising 2 generations, the first of which consisted of
individuals born in the previous year. To keep the model
generic and combinable with mesocosm studies under a
variety of conditions, only the bare minimum of detail on the
species’ life history has been incorporated. Survival at a given
peak concentration in the water was defined by a dose–
response curve based on data from a hypothetical mesocosm
study. Some model parameters were estimated with a high
degree of certainty, using published data on water louse
ecology. Parameters quantifying density dependence were
however highly uncertain.

Results show that, for the pond scenario, differences
between the runs were small, while the ditch and stream
scenarios showed a larger variation. The highest treatment
level resulted in a distinctly lower summer peak than the
other treatments. Initial responses for the stretch that was
treated were very similar in both the stream and ditch
scenarios. Empty cells in the ditch were recolonized by
walking and reproducing, but both processes were quite slow,
with the exception of the lowest treatment level simulated.
Recovery, defined as a complete return to nontreatment
densities, did not occur until autumn. The treated part of the
stream exhibited a very fast recovery, showing drift to be an
important factor in water louse population recovery. The
difference between the stream and ditch scenarios was clearly
demonstrated: very little water flow caused localized pesticide
effects, while the water flow in the stream caused effects
throughout the stretch. In a 2-dimensional system, such as a
pond, recolonization took place much faster than in a 1-
dimensional system, such as a ditch or a stream.

Indirect effects of chemicals in food webs

Identifying indirect effects based only on standard labo-
ratory tests is an impossible task. Most commonly such
indirect effects include effects between different trophic
levels based on altered predation pressure, differing sensitiv-
ities to toxicants, effects of parasites, etc. In some instances,
indirect effects can result in trophic cascades (for a review of
trophic cascades, see Polis et al. 2000) and substantially
change the structure and functioning of a community or
ecosystem. The use of experimental multispecies systems,
such as mesocosms, allows for the expression of indirect
effects due to toxicant contamination. Performing these tests
is, however, time and resource consuming, whereas the use of
ecosystem models could be a cheaper alternative or addition.
Although models describing the impact of chemicals on food
webs do exist, microcosms and mesocosms are currently the
only ecosystem-level tools used routinely in the risk assess-
ment of chemicals (van den Brink et al. 2006). Complete
replacement of mesocosm studies by food-web models seems
unrealistic for the near future, because they are rather seen as
tools providing additional lines of evidence. Such models can
be used to interpret effects observed in cosm experiments,
while insights into indirect effects could also be improved by
the further development of food-web or ecosystem models,
using the wealth of information available from cosm experi-
ments for hypothesis generation and validation (Traas et al.
2004). Our search yielded 18 models that could be used to
assess indirect effects in systems (Table 3). Although in the
following case study, the precise ecological role of individual
species was largely unspecified, food-web models can predict
quite well the indirect effects of chemicals like pesticides. If
calibrated to a specific study, interpolation or extrapolation of
food-web effects between exposure patterns might also be
possible, although this greatly depends on the toxicokinetics
and toxicodynamics, i.e., the mode of action of the compound
under study.
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Predicting direct and indirect effects of chemicals in aquatic
food webs—The case study is based on the study by Sourisseau
et al. (2008a), describing the model development in
detail, including sensitivity analysis, calibration, and valida-
tion, while Sourisseau et al. (2008b) present the application
of the model to a deltamethrin experiment in artificial
streams.

The specific model of the community in the artificial
streams was implemented in AQUATOX 6.21 (http://
www.epa.gov/waterscience/models/aquatox/), which has
been developed by the USEPA (Park and Clough 2004; Park
et al. 2008). AQUATOX is not a single model but offers
equations and standard parameter sets to build bioenergetics
models that simultaneously simulate several state variables,
such as the biomass of various groups of organisms (e.g.,
phytoplankton, zooplankton, periphyton, macrophytes, zoo-
benthos, and fish) as well as detrital compartments, toxicants,
and other abiotic variables, e.g., nutrient concentrations.

Sourisseau et al. (2008a) modeled the food webs by first
deciding on the level of aggregation of the food web: ‘‘The
modeling efforts focused on a simplified (aggregated) food
web with 7 biological compartments: 3 for the producers
(phytoplankton, periphyton, and filamentous algae), 2 for the
herbivores (zooplankton and benthic grazers), 1 for the
benthic detritus feeders, and 1 for the predatory inverte-
brates. In addition, detritus were split into 2 pools (suspended
and sediment detritus).’’ Values from a literature review were
used to replace, where possible, the default AQUATOX
parameters (which are mainly based on North American
conditions) with parameters more appropriate for Central
European conditions. Experimental data from 1 control
artificial stream (no toxicant applications) monitored over
2 months in 2005 were used to calibrate the model. The biota
were sampled 4 times within this period. The model
parameters were modified manually, but goodness-of-fit
was assessed by various quantitative measures. Of the
32 parameters that significantly affected the model outcome,
the most important ones were found to be maximum
photosynthetic rate and optimal temperature for periphyton
and filamentous algae, and the optimal temperature, temper-
ature response slope, and maximum consumption rate for
predatory invertebrates.

Deltamethrin effects were expressed as risk quotients based
on the probability of, e.g., a 20% decrease in a population
under treatment compared with control conditions. Only
short- (96 h) and medium-term (240h) effects were consid-
ered, due to the rapid degradation of deltamethrin. The
results show that direct effects were predicted according to
the assumed sensitivities of different groups. The model was
also able to predict an indirect effect for a dose-related
probability of increased periphyton biomass.

Prediction of bioaccumulation

Chemicals released into the environment are often taken
up and accumulated in organisms, in the process known as
bioaccumulation. Both bioconcentration and biomagnification
result in accumulation of chemicals in organisms. An essential
difference between bioconcentration and biomagnification is
the trophic level where these processes take place: bio-
concentration occurs within a trophic level and is the increase
in concentration of a substance in an individual’s tissues due
to uptake from the surrounding environment, while bio-
magnification is the increase in the concentration of a
substance in an organism due to food uptake. It is especially
for the investigation of biomagnification that ecological
models could be very useful to assess the risks posed to
different trophic levels in a food web. They could be used as
tools to refine experimental studies and identify the most
critical compartments in an ecosystem in terms of the effects
of various chemicals.

In our database of models, only 16 include bioaccumu-
lation and/or biomagnification processes. These are either
food-web or ecosystem models (Traas and Aldenberg 1992;
Arnot and Gobas 2004; Park et al. 2008), or models mainly
dealing with PCBs or heavy metals in aquatic populations
(Madenjian 1993; Chen and Liao 2004). In several studies
(Mastala et al. 1993; Klanjscek et al. 2007) bioaccumulation
processes are examined in more detail at the individual
level, including toxicant dilution through reproduction. By
further developing the threshold damage model (TDM),
Ashauer et al. (2007) examined the accumulation and
depuration of various substances in Gammarus pulex. After
a critical internal threshold has been reached, there is a
certain probability that an individual will die. We also
found a few terrestrial models looking into exposure and
bioaccumulation, but they disregard effects of toxicants to
populations and their dynamics (Chow et al. 2005;
Schipper et al. 2008).

The model in the following case study was developed to
study the response of a meadow ecosystem to continued
loading with the persistent contaminant Cd (Traas and
Aldenberg 1992). The probabilistic treatment of the model
resulted in probability distributions of all relevant model
outputs. It was, therefore, possible to calculate the proba-
bilities of exceeding given environmental standards, following
different Cd loadings. This type of modeling study is useful to
obtain a general overview of the system and provides a rough
estimate of critical compartments in a food web with regard
to metal loads.

A model for predicting contaminant Cd accumulation in
meadows—The model belongs to the CATS group of models
(Contaminants in Aquatic and Terrestrial Systems) and was
developed for the ecological risk assessment of Cd accumu-
lation in a meadow system, on a moist, nutrient-rich peat soil
in the lowland peat district in the Netherlands.

A major feature of this model is the conceptual separation
of the biomass and toxicant cycles. Only bioaccumulation is
modeled, without any effects on the biomass/nutrient cycle.
The model considers spatial structure only in the vertical
direction (i.e., soil layers, vegetation), while the area is
considered to be homogeneous. Modeled species are grouped
into functional groups based on their role with respect to
nutrient cycling. Presence and abundance of specific verte-
brates, such as raptors or carnivorous mammals, are usually
considered to reflect the health of the ecosystem. Their
feeding habits are quite accurately known, while ecological
details of soil fauna feeding habits are much less known.
Because the goal of this model was not to predict true
population dynamics in the field but to study the principal
effect of emission reduction, the more phenomenological
approach of logistic growth was chosen to embed mass
balance principles. The major feature of the toxicant cycle is
the principal role of pollutant equilibria determining the
amount of Cd bound to the litter or SOM or Cd dissolved in
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interstitial pores. A high binding constant means that the
dissolved Cd concentration is quite low and vice versa.
Cadmium enters the system by deposition from manure
brought in from outside the system and bird immigration,
while it leaves the system through percolation of dissolved Cd
in excess rain water to deeper soil layers, with crop harvest-
ing, meadow bird emigration, and the deaths of cows and
birds.

Biomass fluxes in the model follow similar paths for all
groups: all animal functional groups consume food either
from 1 or several sources. Food is assimilated with a certain
efficiency, and is partitioned into growth, reproduction, and
respiration, while nonassimilated food is egested. Toxic fluxes
in animal groups include Cd uptake from their food or from
the soil solution. The nonassimilated fraction of Cd in the
food is egested with nonassimilated biomass and is returned to
litter or soil organic matter, depending on the animal’s
habitat. The group loses Cd by mortality, excretion and
predation, where Cd excretion is modeled as a first-order
process.

Simulations show that a steady state is reached within 3 y
for all functional groups, as well as for organic matter pools
and all accumulation scenarios. The authors conclude that Cd
accumulation shows the same dependence on topsoil con-
centration for all compartments, and that steady-state
concentrations will be reached somewhere in the year 2300.
Given that this is a model with no feedback between
accumulation level and the biomass cycle, an almost linear
relation seems to exist between soil concentrations and
concentrations in all functional groups. Results also show
that environmental quality criteria for the food of birds are
exceeded at the same loading scenarios, for the years 2015
and 2050. In other scenarios, where Cd load is smaller, there
is no real risk to bird food. However, when it comes to food
for mammals, it seems that in 2015, even with 1/8 of the
current load, the standard will be exceeded by 2.4%. By 2050,
the quality standards will be exceeded even if they are as high
as half of the present load.

DO THE MODELS REVIEWED ADDRESS THE
REQUIREMENTS FOR PROTECTION GOALS IN
LEGISLATIVE DOCUMENTS?

Hommen et al. (this issue) reviewed protection goals, data
requirements, and risk characterizations within European
chemical directives and concluded that the risk assessment
approach in different directives is very similar because they
are all based on a quotient of predicted or measured
environmental concentrations and an ecological threshold
value. Protection goals are broadly defined in both spatial and
temporal terms, e.g., local versus regional population
protection and defining acceptable recovery period for
affected nontarget organisms. Hommen et al. (this issue)
linked the proposed areas of model application to protection
principles, as defined by Brock et al. (2006) and European
chemical directives. This linkage can be used to relate model
output to protection goals, with the most common output
types being population abundances, biomass (more used in
ecosystem models), and population growth rates. To translate
the output of standard laboratory tests to these higher levels
of organization, such as populations and ecosystems, which
are often the level of protection, ecological models offer
excellent tools.
Linking reviewed models to potential areas of application

Some of the case studies show that more than 1 modeling
approach can be used within 1 area of application, but also
the potential of the evaluated models to cover more than
just 1 application area. Because usually not 1 endpoint, but a
combination of endpoints, is of interest in chemical risk
assessment, it is reasonable to expect that models will
belong to more than 1 application area. For example,
integration of a detailed exposure–effects link, such as a TK-
TD model, with a population model will produce a more
realistic description of effects of time-varying exposure on
field populations. Such models can also give information
about effects at the individual level, due to the TK-TD
component, and about population-level recovery, due to
recovery-relevant vital parameters, such as survival and
reproduction. Consequently, such a model can be used in 3
application areas.

Given the levels of biological organization (individual,
population, metapopulation, and community or ecosystem)
addressed by various models and the relatively narrow set of
questions and interests for the risk assessment process, only
some biological levels are likely to be relevant and appropriate
when addressing each of the proposed application areas.
Table 5 summarizes our assessment about useful combina-
tions between the level of biological organization (individual,
population, metapopulation, and community or ecosystem),
modeled entities within these levels (from internal concen-
trations, stages, individuals to functional groups), and
potential areas of application they could address. Assumed
useful combinations are denoted as grey areas, while numbers
represent the findings from our review of the models and
show the numbers of existing models for each of the
combination. We obtained 2 modeling studies that focus on
effects of toxicants on energy budgets in individuals that do
not yet address the population levels. There is, however, a
high potential in these studies to do so in the future. Not
surprisingly, models at the population level generally suffice
when the focus is on population-level effects. Preferably,
populations in these models would be structured at least at
the level of stage or age. Exposure extrapolation can be
performed at either the individual or the population level. If
population-level effects of time-varying or multipeak expo-
sure are of interest, a TK-TD type of submodel can be used to
assess the effects at the individual level. On the other hand, in
cases with a single peak or constant exposure, a detailed TK-
TD model is not needed, and a direct link between exposure
and effects can be used to model effects on individuals.
Because recovery processes encompass individual- to com-
munity-based processes, all levels might be appropriate. For
instance, individual recovery might be more important for
vertebrates, whereas for invertebrates the focus will usually
be on the population level. Because indirect effects are
defined as feedbacks among functional groups or trophic
levels in a food web, the food web/community/ecosystem
level is the relevant one for a modeling study. Finally,
bioconcentration processes are best investigated at the
individual level, and this was most commonly found in
published studies, while at least a simple food chain is
required for biomagnification. If necessary, both levels can be
combined in 1 study. Just as with application areas, and
depending on the questions asked, models relating to different
biological levels of organization can be combined.
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When it comes to spatial structure, our review found a very
small fraction of spatially explicit models, probably due to the
high computing and data demands of such models, and
because exposure is not yet commonly modeled in a spatially
explicit manner. We did, however, find several modeling
studies where exposure is explicitly modeled, but the effects
and dynamics of exposed individuals and populations are not.

OUTLOOK
Due to the imprecision of protection goals, researchers and

risk assessors rely on different sources of guidance to bridge
the gap between measurement endpoints and protection
goals. These include technical documents (EC 2002; SANCO
2002) and reports from workshops where all the stakeholders
(academia, regulating authorities, and industry) are brought
together (Campbell et al. 1998; Giddings et al. 2001;
Barnthouse et al. 2007; Forbes et al. 2009; Thorbek et al.
2010). So, even though the protection aims in European
legislation are very broadly defined, their focus and the level
of protection have been interpreted into more manageable
terms. Ecological models have proven to be able to provide a
strong link between measured data and foci of protection.
Further development and improvement of ecological models
in RA greatly depends on the needs identified by industry and
regulators. During the last few years, for instance, recovery of
affected species has become very important for the registra-
tion of pesticides. The fact that recovery cannot be studied for
all species, even in field studies, e.g., mesocosm studies, has
stimulated the development of recovery models (van den
Brink et al. 2007). Furthermore, with progress in computing,
explicit consideration of space in exposure and effects is
becoming more common and is a vital part of a realistic
ecological risk assessment process. Interestingly, almost half
of the spatially explicit models in our database are also
individual based, thus representing the high ends of both
biological and spatial structures, while the other half are
based on biologically unstructured populations. The develop-
ment of spatially explicit and spatially realistic (GIS-based)
models is expected to increase for future chemical ERA
purposes.

An additional advantage of modeling studies is that they
allow deficiencies in existing datasets to be identified, thus
making future experimental research more focused. One of
the challenges that might be faced in this field is the proper
link between exposure and effects in the field. This topic was
covered by the eLINK workshop (Brock et al. 2010) that
should produce tools that correctly address the effects of
extrapolation within a species, i.e., extrapolation to popula-
tion-level response, as well as from the lab to field conditions.
Because the emphasis is on realistic ERA, reliable data will be
required on life-history traits of the species of interest, their
life-cycle parameters and, in the case of spatially explicit
environments, their movement and dispersal patterns. Effects
of chemicals need to be looked at for all levels, including
sublethal effects, so the resulting risk is not overestimated or
underestimated.

This study represents one of the steps in addressing the
potentials and pitfalls of ecological models published in the
last 2 decades for the field of regulatory risk assessment. The
range of modeling studies identified in our review reveals a
need for more coherent modeling approaches relating to
chemical risk assessment, an issue put forward by the
LEMTOX workshop (Forbes et al. 2009). The workshop
identified obstacles to a wider use of models in risk assessment
of plant protection products, as well as ways forward. One of
these was the development of Good Modeling Practice, an
approach that would include recommendations and informa-
tion on all parts of the modeling process, including design,
testing, application, documentation, and reporting. Model
development relies heavily on the focal species or ecosystem
and questions that are more or less similar in the risk
assessment schemes for different types of chemicals, which
clearly suggests that a more unified approach is definitely
feasible. A big step forward for the field of ecological models
in chemical RA is the establishment of an advisory group
within SETAC, called MemoRisk, which focuses on mecha-
nistic models in chemical risk assessment (Preuss, Hommen,
et al. 2009). Furthermore, the establishment of the CREAM
EU (Grimm et al. 2009) project, whose main goal is to
develop a suite of well-tested and validated mechanistic
ecological effect models for an array of species and ecosystems
relevant to chemical risk assessments, is probably the biggest
leap in the right direction.

It is relatively easy to be impressed by the vast possibilities
of ecological models, and we want to caution against the urge
to apply them to any system, without extensive prior
considerations. Ecological models are very useful, integrative
tools with a high potential for extrapolation. However, it is
very important to bear in mind that model output should
always be regarded in a relative sense and no absolute
conclusions should be drawn. The error propagation in model
results arises from errors in data sampling and accumulation,
false assumptions, and omission of potentially relevant
processes. Bartell et al. (2003) rightly state that the focus of
risk assessors should be on the relative strengths of each
modeling approach, which should be chosen based on the
question at hand and protection aims.

In conclusion, the published literature offers a variety of
modeling approaches that have been developed to answer
various questions related to effects of chemicals. Most of
them are presented as academic exercises rather than for
registration purposes, although many of them have a high
potential for regulatory risk assessment. Brock et al. (2006)
mention the potential use of modeling studies in the highest
tiers of RA of chemicals under the WFD and 91/414/EC
directives, following standard species tests as the first,
species sensitivity distributions as the second and the model
ecosystem approach as the third tier. Only in the third and
higher tiers, modeling studies are considered as tools for RA
refinement. But even in the highest tiers of RA, some
models are more generic, easier to parameterize and, thus,
useful to obtain preliminary results on the effects of
chemicals on populations in question. Models that include
only the basic life-history of the species, e.g., unstructured
or structured such as Euler-Lotka based or matrix models,
could be used for an initial screening process. These
modeling studies can give an overview of adverse effects
and/or most sensitive life-stages, requiring a limited effort.
For more specific cases and questions, more complex
models including more detailed life histories of focal
species, such as IBMs, spatial structure, and different
exposure patterns could be more appropriate. Our review,
including the database of models, represents a starting point
for gaining an overview of published ecological models used
to assess the effects various chemical substances have on
different species. Furthermore, the case studies serve as
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examples of the possibilities and added value of various
ecological modeling approaches for the field of chemical
ERA. Finally, easily obtainable information on focal species,
habitats, and chemical substances, and more specific details
on technical aspects of the models reviewed here, might
facilitate the decision-making process for end-users.
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